7 research outputs found

    Sparse Coding Based Feature Representation Method for Remote Sensing Images

    Get PDF
    In this dissertation, we study sparse coding based feature representation method for the classification of multispectral and hyperspectral images (HSI). The existing feature representation systems based on the sparse signal model are computationally expensive, requiring to solve a convex optimization problem to learn a dictionary. A sparse coding feature representation framework for the classification of HSI is presented that alleviates the complexity of sparse coding through sub-band construction, dictionary learning, and encoding steps. In the framework, we construct the dictionary based upon the extracted sub-bands from the spectral representation of a pixel. In the encoding step, we utilize a soft threshold function to obtain sparse feature representations for HSI. Experimental results showed that a randomly selected dictionary could be as effective as a dictionary learned from optimization. The new representation usually has a very high dimensionality requiring a lot of computational resources. In addition, the spatial information of the HSI data has not been included in the representation. Thus, we modify the framework by incorporating the spatial information of the HSI pixels and reducing the dimension of the new sparse representations. The enhanced model, called sparse coding based dense feature representation (SC-DFR), is integrated with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) classifiers to discriminate different types of land cover. We evaluated the proposed algorithm on three well known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit (SOMP) and image fusion and recursive filtering (IFRF). The results from the experiments showed that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification. To further verify the power of the new feature representation method, we applied it to a pan-sharpened image to detect seafloor scars in shallow waters. Propeller scars are formed when boat propellers strike and break apart seagrass beds, resulting in habitat loss. We developed a robust identification system by incorporating morphological filters to detect and map the scars. Our results showed that the proposed method can be implemented on a regular basis to monitor changes in habitat characteristics of coastal waters

    Fusion of Visual and Thermal Images Using Genetic Algorithms

    Get PDF
    Biometric technologies such as fingerprint, hand geometry, face and iris recognition are widely used to identify a person's identity. The face recognition system is currently one of the most important biometric technologies, which identifies a person by comparing individually acquired face images with a set of pre-stored face templates in a database

    Hyperspectral Image Classification Using a Spectral-Spatial Sparse Coding Model

    Get PDF
    We present a sparse coding based spectral-spatial classification model for hyperspectral image (HSI) datasets. The proposed method consists of an efficient sparse coding method in which the l1/lq regularized multi-class logistic regression technique was utilized to achieve a compact representation of hyperspectral image pixels for land cover classification. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center and compared our algorithm to a recently proposed method, Gaussian process maximum likelihood (GP-ML) classifier. Experimental results show that the proposed method can achieve significantly better performances than the GP-ML classifier when training data is limited with a compact pixel representation, leading to more efficient HSI classification systems

    Sparse Coding Based Dense Feature Representation Model for Hyperspectral Image Classification

    Get PDF
    We present a sparse coding based dense feature representation model (a preliminary version of the paper was presented at the SPIE Remote Sensing Conference, Dresden, Germany, 2013) for hyperspectral image (HSI) classification. The proposed method learns a new representation for each pixel in HSI through the following four steps: sub-band construction, dictionary learning, encoding, and feature selection. The new representation usually has a very high dimensionality requiring a large amount of computational resources. We applied the l1/lq regularized multiclass logistic regression technique to reduce the size of the new representation. We integrated the method with a linear support vector machine (SVM) and a composite kernels SVM (CKSVM) to discriminate different types of land cover. We evaluated the proposed algorithm on three well-known HSI datasets and compared our method to four recently developed classification methods: SVM, CKSVM, simultaneous orthogonal matching pursuit, and image fusion and recursive filtering. Experimental results show that the proposed method can achieve better overall and average classification accuracies with a much more compact representation leading to more efficient sparse models for HSI classification

    Sparse Coding for Hyperspectral Images Using Random Dictionary and Soft Thresholding

    Get PDF
    Many techniques have been recently developed for classification of hyperspectral images (HSI) including support vector machines (SVMs), neural networks and graph-based methods. To achieve good performances for the classification, a good feature representation of the HSI is essential. A great deal of feature extraction algorithms have been developed such as principal component analysis (PCA) and independent component analysis (ICA). Sparse coding has recently shown state-of-the-art performances in many applications including image classification. In this paper, we present a feature extraction method for HSI data motivated by a recently developed sparse coding based image representation technique. Sparse coding consists of a dictionary learning step and an encoding step. In the learning step, we compared two different methods, L1-penalized sparse coding and random selection for the dictionary learning. In the encoding step, we utilized a soft threshold activation function to obtain feature representations for HSI. We applied the proposed algorithm to a HSI dataset collected at the Kennedy Space Center (KSC) and compared our results with those obtained by a recently proposed method, supervised locally linear embedding weighted k-nearest-neighbor (SLLE-WkNN) classifier. We have achieved better performances on this dataset in terms of the overall accuracy with a random dictionary. We conclude that this simple feature extraction framework might lead to more efficient HSI classification systems

    Detection of Seagrass Scars Using Sparse Coding and Morphological Filter

    Get PDF
    We present a two-step algorithm for the detection of seafloor propeller seagrass scars in shallow water using panchromatic images. The first step is to classify image pixels into scar and non-scar categories based on a sparse coding algorithm. The first step produces an initial scar map in which false positive scar pixels may be present. In the second step, local orientation of each detected scar pixel is computed using the morphological directional profile, which is defined as outputs of a directional filter with a varying orientation parameter. The profile is then utilized to eliminate false positives and generate the final scar detection map. We applied the algorithm to a panchromatic image captured at the Deckle Beach, Florida using the WorldView2 orbiting satellite. Our results show that the proposed method can achieve \u3e90% accuracy on the detection of seagrass scars
    corecore